Using GPUs for Weather and Climate Models

Mark Govett ESRL/GSD

GPU / Multi-core Technology

- NVIDIA: Fermi chip first to support HPC
 - Formed partnerships with Cray, IBM on HPC systems
 - #2 system on TOP500 (Fermi, China)
- AMD/ATI: Primarily graphics currently
 - #7 system on TOP500 (AMD-Radeon, China)
 - Fusion chip in 2011 (5 TeraFlops)
- Intel: Knights Ferry (2011), 32-64 cores

NVIDIA: Fermi (2010)

♦ 1.2 TeraFlops
 ♦ 8x increase in double precision
 ♦ 2x increase in memory bandwidth
 ♦ Error correcting memory

GPU: 2008

933Gflops 150W

CPU – GPU Comparison

CHIP TYPE	CPU Nahalem	GPU NVIDIA Tesla	GPU NVIDIA Fermi
Cores	4	240	480
Parallelism	Medium Grain	Fine Grain	Fine Grain
Performance Single Precision Double Precision	47 Gflops 23 GFlops	933 GFlops 60 GFlops	1040 GFlops 500 GFlops
Power Consumption	130W	150W	220W
Memory	24-48 GBytes	1-2 GBytes	3-6 GBytes

Next Generation Weather Models

- Models being designed for global cloud resolving scales (3-4km)
- Requires PetaFlop Computers

DOE Jaguar System

- 2.3 PetaFlops
- 250,000 CPUs
- 284 cabinets
- 7-10 MW power
- ~ \$50-100 million
- Reliability in hours

GPU System

- 1.0 PetaFlop
- 1000 NVIDIA GPUs
- 10 cabinets
- 0.5 MW power
- ~ \$5-10 million
- Reliability in weeks
- Large CPU systems (~100 thousand cores) are unrealistic for operational weather forecasting
 - Power, cooling, reliability, cost
 - Application scaling

Valmont
Power Plant
~200 MegaWatts
Boulder, CO

Programming GPUs

- Languages
 - CUDA-C: available from NVIDIA
 - OpenCL: industry standard (NVIDIA, AMD, Apple, etc)
 - Fortran: PGI, CAPS, F2C-ACC compilers
- Fine grain (loop level) parallelism
 - Needed to keep 480+ cores busy
 - Code modifications, restructuring may be necessary to get good performance

Application Performance

GPU Device

GPU Multi-layer Memory

- 100x is possible on highly scalable codes
- Efficient use of memory is critical to good performance
 - 1-2 cycles to access shared memory
 - Hundreds of cycles to access global memory

Tesla (2008)

- 16K shared memory
- 16K constant memory
- 2GB global memory

Execution Flow-control

(select routines)

- Performance benefits can be overshadowed by the copy
- WRF demonstrated 20x improvement, 5x overall (Michalakes, 2009)

Execution Flow-control

(run everything on GPUs)

- Eliminates copy every model time step
- CPU-GPU copies only needed for input /output, interprocess communications
- JMA: ASUCA model, demonstrated 70x performance improvement
 - Rewrote the code in CUDA

Non-hydrostatic Icosahedral Model (NIM)

- Global Weather Forecast Model
- Under development at NOAA Earth System
 Research Laboratory
 - Dynamics complete, physics integration in progress
- Non-hydrostatic
- Uniform, hexagonal-based, icosahedral grid
- Plan to run tests at 3.5km global in late 2010
 - Cloud resolving scale
 - Model validation using AquaPlanet

NIM Code Parallelization (2009)

- Developed the Fortran-to-CUDA compiler (F2C-ACC)
 - Commercial compilers were not available in 2008
 - Converts Fortran 90 into C or CUDA-C
 - Some hand tuning was necessary
- Parallelized NIM model dynamics
 - Demonstrated 34x performance boost over best CPU run time
 - Tesla Chip, Intel Harpertown (2008)
 - Result for a single GPU
 - Communications only needed for I/O
- Physics parallelization planned

NIM Parallelization Efforts (2010)

- Run on Fermi GPUs
 - ~ 2x improvement over Tesla
- Evaluate Fortran GPU compilers
 - 34x is the benchmark
- Run on Multiple GPUs
 - Modified F2C-ACC GPU compiler
 - Uses MPI-based Scalable Modeling System (SMS)
 - Parallelization is mostly complete

NIM Parallel Performance

- Application scaling is limited by the fraction of time spent doing inter-process communications
 - Minimize data volume and frequency
 - Overlap communications with computations
- Plan to increase the number of GPUs as we increase the model resolution
 - Maintain about 8000 horizontal points per GPU

About 5000 GPUs will be needed to run 3.5 KM NIM at ~ 2 percent of real-time

Points /

time

GPUs and the Challenges Ahead

- Performance and Portability
 - CPUs and GPUs maximize performance differently
 - Challenge to maintain a single source
- New codes are easier to parallelize
 - NIM was designed to run on GPUs
 - Collaboration between model developers, computer scientists

Final Thoughts

- HPC transitions about every decade
 - Vector -> MPP -> COTS Clusters -> GPUs
 - 20x cost savings: hardware, power, infrastructure
- Partnerships
 - Algorithms, tools, compilers, systems, chips
 - Recent DARPA announcement
 - 25 million to advance GPU computing
 - We have had success in GPU computing
 - Compiler development, NIM model parallelization
 - Collaborations with NVIDIA, AMD, PGI, CAPS

